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Chapter 1

Ordinary Least Squares

Ordinary Least Squares (OLS) is still the workhorse of econometrics. I develop a quite

succinct presentation of the estimator, its assumptions and its properties. It is implemented

in Stata through the regress command.

Figure 1.1: OLS regression

1.1 Gauss-Markov Assumptions

The OLS estimator that will briefly derived is based upon the well known Gauss-Markov

assumptions. Under these assumptions, the OLS estimator is the Best Linear Unbiased

Estimator (BLUE)
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1.2. OLS ESTIMATOR CHAPTER 1. ORDINARY LEAST SQUARES

1. Linearity: implies that the marginal effect does not depend on the level of regress

∂y

∂X
= β (1.1)

2. Strict Exogeneity: the conditional mean of the error term is zero

E[εi|X] = 0 (1.2)

• unconditional zero mean of the error term

E[E[ε|X]] = E[ε] (1.3)

(this is possible by the law of total expectations)

• orthogonality of the error term: the basis of the further discussed method of the

moments

E[xjkεi] = E[E[xjkεi|xjk]]

= E[xjkE[εi|xjk]]

= 0 (1.4)

3. No multicollinearity: The rank of the n×K data matrix, X, is K with probability 1

4. Spherical error variance

• homoscedasticity

E[ε2|X] = σ2IN > 0 (1.5)

• no correlation between observations

E[εiεj|X] = 0 (1.6)

1.2 OLS estimator

Assuming the four Gauss-Markov assumptions hold we can now derive our OLS estimator.

Let us start with the following multiple regression

10



CHAPTER 1. ORDINARY LEAST SQUARES 1.2. OLS ESTIMATOR

yi = β1 + β2xi2 + β3xi3 + ...+ βkxik + ui (1.7)

where ui is a normally distributed zero mean error term. You can rewrite (1.7) in compact

matrix notation as

y = Xβ + u (1.8)

where X is an n× k matrix of observations on the explanatory variables

X =


x1

x2

x3

...

xk

 =



1 x12 x13 ... x1k

1 x22 x23 ... x2k

.

.

.

xn1 xn2 xn3 ... xnk


β is a 1× k vector of coefficients and u is an n× 1 vector of unobservable disturbances.

Estimation of β proceeds by minimizing the sum of squared residuals (SSR). Define the

sum if squared residuals function for any possible k × 1 parameter vector b as

b ≡ arg minSSR(β) = arg min(u′u) (1.9)

since u = y −Xβ we can define (1.9) as

(y−Xβ)′(y−Xβ) = y′y− β′X ′Xβ+ 2y(Xβ)′ (1.10)

notice that the scalar1 (Xβ)′y = y′Xβ. Taking the first order conditions we get

∂SSRβ

∂β
= 0

−2(X ′X)β+ 2X ′y = 0

(X ′X)β = X ′y

(X ′X)−1(X ′X)β = (X ′X)−1X ′y (1.11)

which yields the well-known β̂ OLS estimator

β̂ = (X ′X)−1X ′y (1.12)

1This can easily be verified if one looks at the dimensions of the X, y and β matrices.
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1.2. OLS ESTIMATOR CHAPTER 1. ORDINARY LEAST SQUARES

The variance of the OLS estimator is derived as follows

V [β̂|X] = V
[
(X ′X)−1X ′y|X

]
= V

[
(X ′X)−1X ′(Xβ+ u)|X

]
= V

[
(X ′X)−1X ′Xβ+ (X ′X)−1X ′u|X

]
= V

[
β+ (X ′X)−1X ′u|X

]
= V

[
(X ′X)−1X ′u|X

]
= (X ′X)−1X ′

[
V [u|X]X(X ′X)−1

]
= (X ′X)−1X ′(σ2IN)X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1 (1.13)

1.2.1 Small sample properties of the OLS estimator

Unbiasedness

β̂ = [X ′X]−1X ′y

= [X ′X]−1X ′[Xβ+ u]

= [X ′X]−1X ′Xβ+ [X ′X]−1X ′u

= β+ [X ′X]−1X ′u (1.14)

taking the expectations of β̂

E[β̂|X] = E[β] + E
(
[X ′X]−1X ′u|X

)
= β + [X ′X]−1X ′E[u|x] (1.15)

since the orthogonality condition imposes E[u|x] = 0

E[β̂] = β (1.16)

1.2.2 Asymptotic distribution of the OLS estimator

The following assumptions are required to derive the asymptotic properties of the OLS

estimator:

12



CHAPTER 1. ORDINARY LEAST SQUARES 1.2. OLS ESTIMATOR

1. the d.g.p follows y = Xβ+ u

2. data are independent over i with E[u|X] = 0 and E[uu′|X] = Ω = diag[σ2
i ]

3. the matrix X is of full rank to that Xβ(1) = Xβ(2) iff β(1) = Xβ(2)

4. the K ×K matrix

Mxx = p limN−1X ′X = p limN−1

N∑
i=1

xix
′
i = limN−1

N∑
i=1

E[xix
′
i] (1.17)

exists and is finite nonsigular

5. the variance covariance matrix

MxΩx = p limN−1X ′uu′X = p limN−1
∑

u2
ixix

′
i = limN−1

∑
E[u2

ixix
′
i] (1.18)

Then the OLS estimator β̂ is consistent for β and

√
N(β̂− β)→d N [0,M−1

xxMxΩxM
−1
xx ] (1.19)

Assumption 1 ensures E[y|X] = Xβ and permits heterostedastic errors with variance σ2
i ,

more general than the homoscedastic uncorrelated errors that restrict Ω = σ2I. Assumption

3 rules out perfect collinearity among the regressors. Assumption 4 leads to the rescaling of

X ′X by N1. Note that by a law of large numbers p lim = limE.

Asymptotic Distribution The asymptotic distribution is interpreted as being applicable

in large samples, meaning samples large enough for the limit distribution to be a good

approximation but not so large that β̂ →p β as then its asymptotic distribution would be

degenerate. The asymptotic distribution is obtained from (1.19) by division by
√
N and

addition of β. This yields the asymptotic distribution

β̂ ∼a N [β,N−1M−1
xxMxΩxM

−1
xx ] (1.20)

which can also be expressed as

β̂ ∼a N [β, [X ′X]−1X ′ΩX[X ′X]−1] (1.21)

where [X ′X]−1X ′ΩX[X ′X]−1 is V [β̂]. With homoscedastic errors (1.22) is simplified

to

β̂ ∼a N [β, σ2[X ′X]−1] (1.22)

because Ω = σ2I so that X ′ΩX = σ2X ′X and hence MxΩx = σ2Mxx.

13



1.2. OLS ESTIMATOR CHAPTER 1. ORDINARY LEAST SQUARES

1.2.3 Robust Standard Errors

Heteroskedasticity-robust standard errors can be estimated for an OLS regression and are

implemented in Stata as the , robust option in the regress command. In order to do this

however we first need to produce an estimate of the OLS variance, which will be given by

the sandwich estimate:

V̂ [β̂] = N−1M̂−1
xx M̂xΩxM̂

−1
xx (1.23)

the trouble here being to estimate the filling of the sandwich M̂xΩx. One solution is to

use White’s robust standard errors which set M̂xΩx = N−1
∑

i û
2
ixix

′
i which can be seen as

a sample transposition from assumption 5.

14



Chapter 2

Generalized Least Squares

Error term normality condition can be considered unrealistic in several applications of eco-

nomic theory. Fortunately, this assumption may be relaxed in order to accommodate for both

heteroskedasticity and serial correlation. The Generalized Least Squares (GLS) estimator,

of which the Feasable GLS and the Weighted Least Squares estimators are particular cases

provide us with a robust variance-covariance matrix which is not only consistent but also

efficient, re-enabling inference over estimated coefficients. Stata has implemented a series of

routines to address both heteroskedasticity and serial correlation issues.

Figure 2.1: Residuals plot
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2.1. GENERALIZED LEAST SQUARESCHAPTER 2. GENERALIZED LEAST SQUARES

2.1 Generalized Least Squares

If we assume Ω 6= σ2I the OLS estimator will be inefficient and therefore needs weighting.

That is done with some simple algebra on the d.g.p. Needless is to say that Ω = E[uu′|X] =

diag[σ2
i ] needs to be nonsigular

Ω−1/2y = Ω−1/2Xβ+ Ω−1/2u (2.1)

reparametrizing Ω−1/2y ≡ ỹ; Ω−1/2X ≡ X̃ and Ω−1/2u ≡ ũ we get

ỹ = X̃β+ ũ (2.2)

which produces the β̂GLS estimator

β̂GLS = [X̃ ′X̃]−1X̃ ′ỹ

= [(Ω−1/2X)′(Ω−1/2X)]−1(Ω−1/2X)′Ω−1/2y

= [X ′Ω−1X]−1X ′Ω−1y (2.3)

This would all be fine if Ω, that is to say the shape of heterogeneity in the actual d.g.p,

was known. Instead, we specify that Ω = Ω(γ), where γ is a finite-dimensional parameter

vector, obtain a consistent estimate γ̂ of γ, and form Ω̂ = Ω̂(γ). This is called the feasible

generalized least squares (FGLS). FGLS is implemented in Stata for panel data only through

the xtfgls command. Its estimator is simply

β̂FGLS = [X ′Ω̂−1X]−1X ′Ω̂−1y (2.4)

where Ω̂ = diag[û2
i ] and û2

i = (y−x′β̂)2. Note that we cannot replace Ω by Ω̂ = diag[û2
i ]

as this yields an inconsistent estimator.

Similarly, the variance of the β̂FGLS will be

V̂ [βGLS] = [X ′Ω̂−1X]−1 (2.5)

and finally, the asymptotic distribution given by

√
N(β̂FGLS − β)→d N [0, (p limN−1X ′Ω−1X)−1] (2.6)

16



CHAPTER 2. GENERALIZED LEAST SQUARES2.2. WEIGHTED LEAST SQUARES

2.2 Weighted Least Squares

If Ω = Ω(γ) is misspecified, the FGLS will still be consistent but will yield the wrong

variance in (2.6). Fortunately, a robust estimate of the variance of the GLS estimator can be

found even if Ω(γ)is misspecified. Specifically, define Σ = Σ(γ) to be a working variance

matrix that does not necessarily equal the true variance matrix Ω = E[uu′|X]. Form an

estimate Σ̂ = Σ(γ̂), where γ̂ is an estimate of γ. Then use weighted least squares with

weighting matrix Σ̂−1. This yields the weighted least-squares (WLS) estimator

β̂WLS = [X ′Σ̂−1X]−1X ′Σ̂−1y (2.7)

Statistical inference is then done without the assumption that Σ = Ω, the true variance.

The WLS variance is derived in a similar fashion as its OLS counterpart in equation (??).

V [β̂WLS|X] = V
(
[X ′Σ̂−1X]−1X ′Σ̂−1[Xβ+ u]

)
= V

(
[X ′Σ̂−1X]−1[X ′Σ̂−1X]β+ [X ′Σ̂−1X]−1X ′Σ̂−1u

)
= V [β] + [X ′Σ̂−1X]−1X ′Σ̂−1V [u]X ′Σ̂−1[X ′Σ̂−1X]−1

= [X ′Σ̂−1X]−1X ′Σ̂−1Ω̂X ′Σ̂−1[X ′Σ̂−1X]−1 (2.8)

nice, isn’t it? Notice that the conditional variance of the error Ω̂ is weighted by Σ̂−1,

where Ω̂ is such that

p limN−1X ′Σ̂−1Ω̂Σ̂−1X = p limN−1X ′Σ−1ΩΣ−1X (2.9)

In the heteroscedastic case Ω̂ = diag[û∗2i ], where û∗2i = yi − x′iβ̂WLS

17



2.2. WEIGHTED LEAST SQUARESCHAPTER 2. GENERALIZED LEAST SQUARES

18



Chapter 3

Model Misspecification

Model misspecification in regression has long been a well-recognized research problem. De-

pending on the applications, a misidentification of a variable X as a (or even the) cause of

Y may result in severe consequences. We present six forms of model misspecification.

3.1 Inconsistency of OLS

Inconsistency is not per se a cause of misspecification but rather a symptom of eitheir a poor

choice of a model functional form or of model endogeneity. Two key conditions are required

to demonstrate the consistency of the OLS estimator

1. the d.g.p. is y = Xβ

2. the d.g.p. is such that p limN−1X ′u = 0

so that

β̂ = β + [X ′X]−1X ′u→p β (3.1)

Now, if the p lim does not converge to the true parameter value β we have inconsistency.

Notice that the misspecification can raise either from (1), that is to say, assuming an improper

shape for the d.g.p. or from (2) if the p lim of the error term does not converge to zero,

meaning endogeneity.

3.2 Functional form misspecification

As mentioned, a poor choice of functional form, say using a linear function to explain an

intrinsically nonlinear relationship will inevitably produce biased estimates.

19



3.3. ENDOGENEITY CHAPTER 3. MODEL MISSPECIFICATION

3.3 Endogeneity

Endogeneity is, possibly alongside with selection bias, the boogeyman of empiricists. Endo-

geneity means that E[u|X] 6= 0, i.e. that the error term is correlated with at least one of

the regressors. Endogeneity is often curbed with resources to Instrumental Variables (to be

exposed in chapter 9) and can be tested via the Hausman test for endogeneity which

will be presented later on (see section 10.2). In panel models, endogeneity can be removed

provided it is time-invariant per unit of analysis through the Fixed Effects1 estimator.

3.4 Omitted variables

The omission of variables is often pointed out as the first source of biased estimators. The

lack of controls, for example, will inflate the effects of the study variable as its value will

be intertwined with the contributions of other covariates. The solution for such horrendous

issue? Just add variables at you own leisure. Well, not quite, add covariates that make sense

in terms of economic theory and then use a Wald test to check whether the extra covariates

add value to the model. More specifically, we will be wanting to measure the impact of the

new variables in the model. Should they be irrelevant and their coefficient will be very close

to zero. In this sense the t-test, which is a squared version of the Wald test, will measure

the distance of the new coefficient to zero

t2 =
β̂2
test − 0

V (β̂test)
∼ χ2(h) (3.2)

3.5 Pseudo-true value

In the omitted variables example the least-squares estimator is subject to confounding in

the sense that it does not estimate β, but instead estimates a function of β, δ, and α. The

p lim of β̂ of β∗ = (β + δα) is referred to as the pseudo-true value. From the pseudo-true

value one can obtain the distribution of β̂ even thought it is inconsistent for β.

1The fixed effects estimator is invokable in Stata by the xtreg yvar xvars, fe
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CHAPTER 3. MODEL MISSPECIFICATION 3.6. PARAMETER HETEROGENEITY

3.6 Parameter heterogeneity

So far we have assumed error terms could vary across units of observation in what we call

idiosyncratic errors, as the i subscript in the regression model has been proof

yi = x′iβ + ui (3.3)

Nevertheless it is quite conceivable that the slope of the parameter may not be equal for

all individual. If we then allow the marginal effect E[yi|xi] = β to vary we will be applying

a random coefficients model. The random coefficients model specifies βi to be independently

and identically distributed over i with distribution that does not depend on the observables

xi. In such case the d.g.p. can be written as

yi = x′iβ + (ui + x′i(βi − β)) (3.4)

where we assume the regressors xi to be uncorrelated with the error term (ui+x
′
i(βi−β)).
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Chapter 4

Panel Data Estimators

In cross-section models data is solely observed at a given point in time which impedes

dynamic analyses of reality or the study of behavioural persistency. With longitudinal models

this limitation is overcome as the unit of observation (individuals, firms, countries, etc.) is

repeated over T periods. Four panel data estimators are presented in this chapter: pooled

OLS, between and within estimator, first-differences and random effects. Because of its

relevance for practitioners greater relevance will be given to the fixed effects (or within)

estimator.

The linear panel data models assume the following specification

yit = αi + x′itβ + εit (4.1)

where εit is iid over i and t. The fixed effects (fe) model (4.1) treats αi as an unobserved

random variable that is potentially correlated with the regressors xit If fixed effects are

present and correlated with xit then models such as pooled ols will be inconsistent.

4.1 Pooled OLS

The pooled OLS estimator is obtained by stacking the data over i and t into one long

regression with N × T observations. The pooled OLS estimator relies on Cov[uit,xit] = 0

to achieve consistency

yit = α + x′itβ + uit, i = 1, ...N, t = 1, ..., T. (4.2)

In practice however, the Cov[uit,xit] = 0 assumption often seems unrealistic. By taking

inter-temporal independence given one is implicitly considering contemporaneous individual

behaviour to be unrelated from past and future ones.
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A more reasonable approach is to expect considerable correlation in y over time, so that

Corr[uit, uis] is high. I other words, the (likely) existence of fixed effects in a models specified

as pooled OLS will produce inconsistent estimates. This can be verified by disaggregating

the ui error term

yit = α + x′itβ + (αi − α + εit). (4.3)

Then the pooled OLS regression of yit on xit and an intercept leads to an inconsistent

estimator of β if the individual effect αi is correlated with the regressors xit, since such

correlation implies that the combined error term αi−α+εit is correlated with the regressors

via the constant α.

4.2 Between Estimator

The between estimator is a stupid estimator. It averages data at individual level, uses OLS

for estimation.

ȳi = αi + x̄′iβ + ε̄i

ȳi = α + x̄′iβ + (αi − α + ε̄i), i = 1, ...N. (4.4)

where ȳi = T−1
∑

t yit, ε̄i = T−1
∑
εit and x̄i = T−1

∑
t xit.

The between estimator collapses individual-level variability in one data point ignoring

changes across time and treating data as cross-sectional. It is consistent if the regressors x̄i

are independent of the composite error ε̄i from (4.4). However, as said for the pooled OLS

model, such independence assumption is often unrealistic, breaking apart the robustness of

the model.

4.3 Within Estimator

The fixed effects or within estimator assumes unobserved individual-level heterogeneity, as

worker or team ability, to remain constant over time. Then longitudinal data allows the

removal of such unobservables simply by averaging it out both depent variable and covariates

over time. Such procedure will wipe out all time-constant unobservables (unfortunately it
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will also wipe out constant observables). Derivation is presented bellow

N∑
i=1

T∑
t=1

yit =
N∑
i=1

αi +
N∑
i=1

T∑
t=1

xit,
¯
β +

N∑
i=1

T∑
t=1

εit

N∑
i=1

T∑
t=1

(yit − ȳi) =
N∑
i=1

(αi − ᾱi) +
N∑
i=1

T∑
t=1

(xit − x̄i)′β +
N∑
i=1

T∑
t=1

(εit − ε̄i)

N∑
i=1

ÿi =
N∑
i=1

ẍi +
N∑
i=1

ε̈i (4.5)

which can be written in the following matrix notation

ÿ = Ẍβ + ε̈ (4.6)

solving the problem of the minimisation of the sum of squared residuals as for the OLS

estimator we get the fe estimator βfe

β̂fe = (Ẍ ′Ẍ)−1Ẍ ′ÿ (4.7)

which in a more intuitive index notation equals

β̂fe =
N∑
i=1

(ẍiẍ
′
i)
−1

N∑
i=1

ẍ′iÿ

=
N∑
i=1

T∑
t=1

[(xit − x̄i)(xit − x̄i)′]−1
N∑
i=1

T
t=1(xit − x̄i)(yit − ȳi). (4.8)

Only the within estimator and the first-differences estimator (presented in section 4.4)

provide consistent estimates for fixed- random- and mixed-effects model specifications. No-

tice that in spite of this result, relative efficiencies of the within estimator will vary, as

discussed in section 4.3.4.

4.3.1 Estimating the fixed effect

In some cases it may be of interest to compute the estimate from the fixed effect itself.

Although such computation may seem at a first glance hard to achieve, after all the αi term

is dropped early in the estimation process, in practice a little algebra is all that is required

to obtain α̂i. Specifically, by decomposing yit from the estimator equation we get
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β̂fe =
N∑
i=1

T∑
t=1

[(xit − x̄i)(xit − x̄i)′]−1
N∑
i=1

T
t=1(xit − x̄i)

[
(αi + x′itβ̂fe)− ȳi

]
β̂fe = (xit − x̄i)−1

[
(αi + x′itβ̂fe)− ȳi)

]
(xit − x̄i)′β̂fe = αi + x′itβ̂fe − ȳi

−x′iβ̂fe = αi − ȳi

which is equal to

α̂i = ȳi − x′iβ̂fe. (4.9)

4.3.2 Within estimator Consistency

The within estimator of β is consistent if p lim(NT )−1
∑

i

∑
t(xit − x̄i)(εit − ε̄i) = 0. This

should happen in either T →∞ or (more likelly for panels) N →∞ and

E[εit − ε̄|xit − x̄i] = 0 (4.10)

whose proof is identical to the OLS estimator consistency proof.

4.3.3 Variance of the Within Estimator

We begin with the basic panel model from (4.1)

yit = αi + xitβ + εit (4.11)

to which the individual averages are subtracted from, as shown in (4.5)

N∑
i=1

T∑
t=1

(yit − ȳi) =
N∑
i=1

(αi − ᾱi) +
N∑
i=1

T∑
t=1

(xit − x̄i)β +
N∑
i=1

T∑
t=1

(εit − ε̄i). (4.12)

The previous equation can however be expressed in the following matrix form

Qyi = QXiβ −Qεi (4.13)

where Q is a T ×T matrix whose permutation with variables creates their deviations for

the mean

QWi = IWi − ew̄′i (4.14)
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where I is T ×T identity and e is a T ×1 vector vector of ones. As in the index notation

case Qαi is absorbed by its mean due to lack of intertemporal variance. The estimation of

the variance is computed as for the OLS estimator and produces

V [β̂fe] =

[
N∑
i=1

X ′iQ
′QXi

]−1

V [Qεi|Xi]QXi

[
N∑
i=1

X ′iQ
′QXi

]−1

(4.15)

4.3.4 Hausman Test

One of the possible applications of the Hausman test (presented in detail in section 10.2 of

chapter 10) is to identify the existence of fixed effects in panels. This is done by comparing

the consistency of the random and fixed effects (within) estimator. The fe estimator will be

consistent in the presence of either fixed or random effects (albeit inefficient in the latter).

The RE estimator however will only be consistent (and efficient) in the presence of random

effects, making biased estimates for fixed effects. One can therefore test the presence of fixed

effects by hypothesising on the statistical significance of the difference between estimators.

We begin by assuming that the true model is the random effects model with αi iid [0, σ2
α]

uncorrelated regressors and εit iid [0, σ2
ε ]. Then the estimator β̃RE is fully efficient and the

Hausman test statistic is

H = (β̃1,RE − β̂1,fe)
′[V̂ [β̂1,fe]− V̂ [β̃1,RE]]−1(β̃1,RE − β̂1,fe) (4.16)

where β1 denotes the subcomponent of β corresponding to the time-varying regressors

since only those can be estimated by the within estimator. This test statistic is

asymptotically Chi2 (dim[β1]) distributed under the null hypothesis. Its full derivation is

available in chapter 10, section 10.2. Stata provides a somewhat sluggish implementation of

the Hausman test. The test is done via a two-step procedure. In the first step the efficient

model (here RE) is estimated and coefficients stored. In the second step the inefficient but

consistent model is estimated. After this the command hausman <efficient> will test the

null that the true model is the RE.

4.4 First-Differences Estimator

The first-differences begins by using the individual-specific effects model (4.1) which is then

lagged and subtracted

yit − yi,t−1 = (xit − xi,t−1)′β + (εit − εi,t−1), i = 1, ...N, t = 2, ...T (4.17)

as the individual specific αi term is cancelled out.
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4.5 Random Effects estimator

An alternative variant of the model (4.1) is the random effects (RE) model which assumes

that the unobservable individual effects αi are random variables distributed independently

of the regressors

αi ∼ [α, σ2
α]

εit ∼ [0, σ2
ε ]. (4.18)

The RE model usually subsumes αi into a composite error term uit = αi + εit. However,

αi is often normalised to zero mean through the addition of a nonrandom scalar intercept

coefficient µ so that

yit = µ+ x′itβ + uit. (4.19)

Then we can say that

Cov [(αi + εit), (αi + εis)] =

σ2
α

σ2
α + σ2

ε .
(4.20)

The RE model therefore imposes the constraint that the composite error term uit is

equicorrelated, since Corr[uit, uis] = σ2
α/[σ

2
α + σ2

ε ] for t 6= s does not vary over time with

the time difference t− s.

4.6 Unbalanced Panel Data

Real world data sets often face drop offs of individuals over time as well as missing years.

In such cases the fe estimator will remain consistent if the strong exogeneity assumption

becomes

E[uit|αi,xi1, ...,xiT , di1, ..., , diT ] = 0 (4.21)

where dit is a dummy equal to one if the itth observation is observed and zero otherwise.

At times it may be convenient to convert unbalanced panels into balanced ones by choos-

ing only those individuals with observations in every year. Such procedure will nevertheless

lead to loss of efficiency in estimation and potentially drive an attrition bias. Attrition bias

occurs when observations are lost in an non-random manner. For example, individuals

with unusually low incomes may be more likely to miss out some observations in the panel.

Alternatively to deleting individuals with missing data one can also consider data impu-

tation based on existing data.
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4.7 Dynamic Models

We now add a dynamic component (one of the regressors is the lagged dependent variable)

to the panel model with individual-specific effects. Notice that by adding this covariate all

previously presented panel estimates will be inconsistent. The model is hence defined as

yit = γyi,t−1 + x′i,t−1β + αi + εit. (4.22)

We begin by assuming stationarity, |γ| < 1, and absence of serial correlation in εit.

An important result is that even if αi is a random effect, OLS estimation of (4.22) is

inconsistent as yi,t−1 is correlated with the unobserved α1 and hence with the composite

error term αi + εit.

4.7.1 True State Dependence and Unobserved Heterogeneity

One important issue that needs to be dealt with in a dynamic model is the time-series

correlation in yit that will now be induced by yi,t−1 in addition to αi.

Let us begin by assuming β = 0 in (4.22). Then

E[yit|yi,t−1, αi] = γiyi,t−1 + αi (4.23)

and Cor[yit, yi,t−1|αi] = γi. The issue though is that αi is really unknown so what is in

fact observed is

E[yit|yi,t−1] = γiyi,t−1 + E[αi|yi,t−1] (4.24)

and Cor[yit|yi,t−1] 6= γ. Specifically, if we assume serial uncorrelated errors, Cor[εit, εi,t−1] =

0 and β = 0 we get

Cor[yit, yi,t−1] = Cor[γ, yi,t−1 + αi + εit, yi,t−1

= γ + Cor[αi, yi,t−1]

= γ +
(1− γ)

1 + (1− γ)σ2
ε/(1 + γ)σ2

α

(4.25)

which makes it clear that are two possible reasons for correlation between yit and yi,t−1:

• true state dependence: occurs when correlation over time is due to the causal

mechanism that links the two periods over time (|γ| > 0. Has economic meaning;

• unobserved heterogeneity: arises even when there is no causal mechanism so γ = 0

but Cor[yit, yi,t−1] = σ2
α/(σ

2
α + σ2

ε);
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4.7.2 Inconsistency of Standard Panel Estimators

All previously presented panel estimators are inconsistent under a dynamic model setting:

• OLS: composite error term (αi + ε) is correlated with yi,t−1 via αi, as yi,t−1 = γyi,t−2 +

x′i,t−1β + αi + εi,t−1;

• within estimator: the regressor (yi,t−1)− ȳi) is correlated with (εit− ε̄i). Consistency

requires ε̄i to be very small in relation with εit;

• random effects: since it is a combination of the within and the between estimator it

is also inconsistent;

• first differences: also inconsistent, but one IV approach proposed by Arellano and

Bond leads to consistent estimates.

4.8 Arellano-Bond Estimator

The dynamic model presented in (4.22) leads to the following first differences equation

yit − yi,t−1 = γ(yi,t−1 − yi,t−2) + (xit − xi,t−1)′β + (εit − εi,t−1) (4.26)

which is inconsistent because yi,t−1 is correlated with εi,t−1 via its own equation. Therefore

the regressors (yi,t−1−yi,t−2) and (εit−εi,t−1) will be correlated in (4.26). Anderson and Hsiao

(1981) proposed estimating (4.22) using an IV estimator where yi,t−2 would instrument

(yi,t−1 − yi,t−2). If we assume the error term εit to be not to be serially correlated, yi,t−2 will

be a valid instrument. Furthermore, yi,t−2 is a good instrument as it will be correlated with

(yi,t−1 − yi,t−2). Anderson and Hsiao also present results suggesting that under the usual

γ > 0 the IV estimator will be more efficient if ∆yi,t−2 is used as instrument instead. Finally,

a more efficient estimation can be achieved if the model is overidentified, that is to say,

if additional lags of the dependent variable are added to the model. In such cases estimation

should be computed via 2SLS or panel GMM.

The resulting panel GMM estimator is known as the Arellano-Bond estimator and given

by

β̂AB =

[(
N∑
i=1

X̃ ′iZi

)
WN

(
N∑
i=1

Z ′iX̃i

)]−1( N∑
i=1

X̃ ′iZi

)
WN

(
N∑
i=1

Z ′iỹi

)
(4.27)
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where X̃i is a (T − 2)× (K + 1) matrix with the ith row (∆yi,t−1,∆x
′
it), t = 3, ..., T , ỹi

is a (T − 2)× 1 vector with the tth row ∆yit and Zi is a (T − 2)× r matrix of instruments

Z =



z′i3 0 ... 0

0 z′i4 .

.

.

. ... ... 0

0 ... 0 z′iT


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Chapter 5

Maximum-Likelihood

The ML estimator holds special place among estimators. It is the most efficient estimator

among consistent asymptotically normal estimators. For a fixed set of data and underlying

probability model, maximum likelihood picks the values of the model parameters that make

the data ”more likely” than any other values of the parameters would make them. The

likelihood principle, due to R. A. Fisher, is to choose as estimator of the parameter vector θ0

that value of θ that maximizes the likelihood of observing the actual sample. In the discrete

case this likelihood is the probability obtained from the probability mass function; in the

continuous case this is the density.

5.1 Likelihood function

The joint probability mass function or density f(y,X|θ) is viewed here as a function

of θ given the data (y,X). This is called the likelihood function and is denoted by

LN(θ|y,X). Maximizing LN [θ] is equivalent to maximizing the log-likelihood function

LN(θ) = lnLN(θ) (5.1)

We take the natural logarithm for the sake of simplicity in computing the objective

function.

5.2 Objective Function

For cross-section data the observations (yi,xi) are independent over i with conditional den-

sity function f(yi|xi, θ). Then by independence the joint conditional density f(y|X, ) =
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∏N
i=1 f(yi|xi, ), leading to the (conditional) log-likelihood function

Notice that the only difference between the likelihood and the objective function is the

N−1 normalization present in the objective function.

QN(θ) = N−1LN(θ) =
N∑
i=1

ln f(yi|xi, θ) = 0 (5.2)

5.3 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) is the estimator that maximizes the (conditional)

log-likelihood function and is clearly an extremum estimator1. Usually the MLE is the local

maximum that solves the first-order conditions

∂LN(θ)

∂θ
=

N∑
i=1

∂ ln f(yi|xi,θ)

∂θ
(5.3)

The gradient vector ∂LN(θ)/∂θ score vector, as it sums the first derivatives of the log

density, and when evaluated at θ0 it is called the efficient score.

5.4 Information Matrix Equality

The ML regularity conditions are the following

Ef

(
∂ ln f(y|x, θ)

∂θ

)
= 0 (5.4)

− Ef
(
∂2 ln f(y|x, θ)

∂θ∂θ′

)
= Ef

(
∂ ln f(y|x, θ)

∂θ

∂ ln f(y|x, θ)

∂θ′

)
(5.5)

where (5.5) is a quite relevant practical result as it facilitates the computation of the

information matrix. The information matrix is the expectation of the outer product of

the score vector,

I = E

(
∂LN(θ)

∂θ

∂LN(θ)

∂θ′

)
(5.6)

For log-likelihood function (5.2) the regularity condition (5.5) implies that

1extremum estimators are those that are calculated through maximization (or minimization) of a certain

objective function, which depends on the data
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− Ef

(
∂2LN(θ)

∂θ∂θ′

∣∣∣∣
θ0

)
= Ef

(
∂LN(θ)

∂θ

∂LN(θ)

∂θ′

∣∣∣∣
θ0

)
(5.7)

which is known as the information matrix (IM) equality.

5.5 Distribution of the ML Estimator

The distribution of the ML estimator will be consistent under the following assumptions

1. the d.g.p is the conditional density f(yi|xi, θ0) used to define the likelihood function

2. the density function f(.) satisfies f(y,θ(1)) = (y,θ(2)) iff θ(1) = θ(2)

3. the matrix

A0 = p limN−1∂
2LN(θ)

∂θ∂θ′

∣∣∣∣
θ0

(5.8)

exists and is finite nonsingular (think of it as analogous to the p limN−1X ′X in OLS)

4. the order of differentiation and integration of the log-likelihood can be reversed

Then the ML estimator θ̂ML, defined to be a solution of the F.O.C.

√
N(θ̂ML− θ0)→d N [0,−A−1

0 ] (5.9)

The resulting asymptotic distribution of the MLE is often expressed as

θ̂ML ∼a N

{
θ,

(
−E
[
∂2L(θ)

∂θ∂θ′

])−1
}

(5.10)

which is again quite similar to the OLS asymptotic distribution. The p lim operator used

for defining A0 in equation (5.8) is replaced by limE and then drop the limit. The right-

hand side of (5.10) is the Cramer-Rao lower bound (CRLB), which from basic statistics

courses is the lower bound of the variance of unbiased estimators in small samples. The

MLE has the strong attraction of having the smallest asymptotic variance among root-N

consistent estimators. This result requires the strong assumption of correct specification of

the conditional density.
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5.5.1 Poisson regression Example

We shall begin with the example of what is perhaps the simplest m-estimator, the Poisson

regression model. Recall that the Poisson distribution is a discrete distribution characterized

by an expected value λ that equals its variance. The f(y|λ) density function equals

f(y|λ) =
exp(−λ)λy

y!
(5.11)

The log-likelihood density will be given by

ln f(yi) = −λ+ yi lnλ− ln yi! (5.12)

and the QN(λ) objective function

LN(λ) =
N∑
i=1

[−λ+ yi lnλ− ln yi!] (5.13)

the first order conditions are taken in relation to β

∂LN(λ)

∂λ
≡ Score = 0 (5.14)

the Score matrix being the partial derivative in terms of λ. In this case we will have

∂LN(λ)

∂λ
=

N∑
i=1

[
−1 +

yi
λ
− 0
]

= 0

N =
N∑
i=1

yi
λ

λ =
N∑
i=1

yi
N

(5.15)

5.6 Quasi-Maximum Likelihood

The quasi-MLE θ̂QML is defined to be the estimator that maximizes a log-likelihood func-

tion that is misspecified, as the result of specification of the wrong density. Generally such

misspecification leads to inconsistent estimation. In terms of intuition, the QML concept is

closely related to the pseudo-tru value misspecification presented in section 3.5.
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5.6.1 Pseudo-True Value

The quasi-MLE θ̂QML converges in probability to the pseudo true value θ∗ defined as

θ∗ = arg max
θ∈Θ

[p limN−1LN(θ)] (5.16)

The probability limit is taken with respect to the true d.g.p. If a misspecification of the

density occurs then the true d.g.p differs from the assumed density f(y|x, θ) used to form

LN(θ) and θ∗ 6= θ0 will imply that the quasi-MLE is inconsistent.

5.6.2 Linear Exponential Family

Exponential family is a class of probability distributions sharing the form

f(y|µ) = expα(µ) + b(y) + c(µ)y (5.17)

It is said that such distributions belong to the linear exponential family (LEF) of density

functions. Its big advantage is to provide consistency even when the density is partially

misspecified. Asides from that, LEF form is chosen for mathematical convenience, on account

of some useful algebraic properties, as well as for generality, as exponential families are in a

sense very natural distributions to consider. The mean parametrization for the LEF is such

that µ = E[y].

Distribution f(y) = expα(µ) + b(y) + c(µ)y E[y] V [y] = [c′(µ)]−1

Normal (σ2 is known) exp −µ
2

eσ2 − 1
2

ln(2πσ2)− y2

2σ2 + µ
σ2y µ σ2

Bernoulli exp ln(1− p) + ln[p/(1− p)]y µ = p µ(1− µ)

Exponential exp lnλ− λy µ = λ−1 µ2

Poisson exp−λ− ln y! + y lnλ µ = λ µ

Table 5.1: LEF densities

As can be seen on 5.1, LEFs are very special cases. In general, misspecification of any

aspect of the density leads to inconsistency of the MLE. Even in the LEF case the quasi-MLE

can be used only to predict the conditional mean whereas with a correctly specified density

one can predict the conditional distribution.
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5.7 Numerical Maximization

The integrals encountered in a basic calculus course are deliberately chosen for simplicity;

those found in most m-estimators however are not always so accommodating. In such cases,

where no closed-form antiderivatives can be found one needs to resort to numerical methods

in order to proceed with the estimation of the desired coefficients. We present here the

four algorithms implemented in Stata via the , technique(’’algorithm’’) option in m-

estimators: Newton-Raphson (NR); Berndt-Hall-Hall-Hausman (BHHH); Davidon-Fletcher-

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS).

5.7.1 Newton-Raphson

The NR algorithm is the standard numerical maximization algorithm. It simply maximizes

the second order of a Taylor approximation to the log-likelihood objective function QN(βi+1)

QN(βi+1) = QN(βi) + (βi+1 − βi)′
∂QN(β)

∂β
+

1

2
(βi+1 − βi)′

∂2QN(β)

∂β∂β′
(βi+1 − βi) (5.18)

The method then finds the value of βi+1 that maximizes this approximation to QN(βi+1)

∂QN(βi+1)

∂βi+1

=
∂QN(β)

∂β
+
∂2QN(β)

∂β∂β′
(βi+1 − βi) = 0

∂2QN(β)

∂β∂β′
(βi+1 − βi) = −∂QN(β)

∂β

(βi+1 − βi) = −
(
∂2QN(β)

∂β∂β′

)−1
∂QN(β)

∂β

βi+1 = βi −
(
∂2QN(β)

∂β∂β′

)−1
∂QN(β)

∂β
(5.19)

In order to address the case where NR algorithm steps past the maximum log-likelihood

value we can introduce a scalar λ which accounts for the step size. This way we modify

(5.19) by adding λ

βi+1 = βi + λ

(
−∂

2QN(β)

∂β∂β′

)−1
∂QN(β)

∂β
(5.20)

The NR procedure has two drawbacks. First, calculation of the Hessian is usually

computation-intensive. Procedures that avoid calculating the Hessian at every iteration

can be much faster. Second, the NR procedure does not guarantee an increase in each step

if the log-likelihood function is not globally concave. When −H−1 = −
(
∂2QN (β)
∂β∂β′

)−1

is not

positive definite, an increase is not guaranteed.
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5.7.2 Berndt-Hall-Hall-Hausman

BHHH (and commonly pronounced B-triple H), proposed using this relationship in the nu-

merical search for the maximum of the log-likelihood function. In particular, the BHHH

procedure uses Bi in the optimization routine in place of −H−1. Each iteration is defined

by

βi+1 = βi + λB−1
i

∂QN(β)

∂β
(5.21)

which is the same as in NR except −H−1 is substituted by B−1, which equals

Bi =
n∑
i=1

N−1sN(βi)sN(βi)
′ (5.22)

and sN(βi)sN(βi)
′ equal to

sN(βi)sN(βi)
′ =



s1
ns

1
n s1

ns
2
n ... s1

ns
k
n

s1
ns

2
n s2

ns
2
n ... s2

ns
k
n

. . . .

. . . .

. . . .

s1
ns

k
n s2

ns
k
n ... skns

k
n


In other words the substitution of −H−1 by B−1 means that instead of the Hessian we

are now maximizing the outer product of the scores.

5.7.3 Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno

The DFP and BFGS methods calculate the approximate Hessian in a way that uses in-

formation at more than one point on the likelihood function. If the function is quadratic,

then information at one point on the function provides all the information that is needed

about the shape of the function. These methods work well, therefore, when the log-likelihood

function is close to quadratic. In contrast, the DFP and BFGS procedures use information

at several points to obtain a sense of the curvature of the log-likelihood function. The DFP

and BFGS procedures use these concepts to approximate the Hessian. The Hessian is the

matrix of second derivatives. As such, it gives the amount by which the slope of the curve

changes as one moves along the curve. The Hessian is defined for infinitesimally small move-

ments. Since we are interested in making large steps, understanding how the slope changes

for non-infinitesimal movements is useful. An arc Hessian can be defined on the basis of how

the gradient changes from one point to another.
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Chapter 6

Binary Response Models

Discrete outcome or qualitative response models are models for a dependent variable that

indicates in which one of m mutually exclusive categories the outcome of interest falls. Binary

outcomes are simple to model and estimation is usually by maximum likelihood because the

distribution of the data is necessarily defined by the Bernoulli model. If the probability of one

outcome equals p, then the probability of the other outcome must be (1p). The two standard

binary outcome models, the logit and the probit models, specify different functional forms

for this probability as a function of regressors and can be seen on figure 11. The difference

between these estimators is qualitatively similar to use of different functional forms for the

conditional mean in least-squares regression.

Figure 6.1: The Logistic and Normal c.d.f.
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6.1 General Binary Model

We begin by presenting a generalized version of the estimation process for binary models

that is valid for both the logit and the probit models. We then proceed with the derivations

of those models which are of particular interest for empirical researchers.

6.1.1 General Binary Outcome Model

For binary outcome data the dependent variable y takes one of two values. We let

y =

{
1 with probability p,

0 with probability 1− p.

A regression model is formed by parameterizing the probability p to depend on a regressor

vector x and a K × 1 parameter vector β. The commonly used models are of single-index

form with conditional probability given by

pi ≡ Pr[yi = 1|x] = F (x′iβ) (6.1)

where F (.) is a specified c.d.f. function. Usually we will work with pi = F (x′iβ).

6.1.2 ML Estimation

The Bernoulli distributed independent sample (yi,xi), i = 1, ..., N is characterized by the

following p.d.f.

f(yi|xi) = pyii (1− pi)1−yi , y = 0, 1 (6.2)

where pi = F (x′iβ). Notice that this the yields probabilities pi and (1 − pi) since f(1) =

p1(1− p)0 and f(0) = p0(1− p)1. The log-density is given by

ln f(yi|xi) = yi ln pi + (1− yi) ln(1− pi)

= yi lnF (x′iβ) + (1− yi) lnF (x′iβ) (6.3)

and consequently the log-likelihood by

LN(β) =
N∑
i=1

yi lnF (x′iβ) + (1− yi) ln(1− F (x′iβ)) (6.4)

Now, according to the used model, different c.d.f.’s will fill in the F (x′iβ) places. Next

comes the first order conditions
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∂LN(β)

∂β
= 0

N∑
i=1

yi
F (x′iβ)

F ′(x′iβ)− 1− yi
(1− F (x′iβ))

F ′(x′iβ) = 0

N∑
i=1

[1− F (x′iβ)]yi + (1− yi)F (x′iβ)

F (x′iβ)[1− F (x′iβ)]
F ′(x′iβ) = 0

N∑
i=1

yi − yiF (x′iβ) + F (x′iβ)− yiF (x′iβ)

F (x′iβ)[1− F (x′iβ)]
F ′(x′iβ) = 0

N∑
i=1

yi − F (x′iβ)

F (x′iβ)[1− F (x′iβ)]
F ′(x′iβ) = 0 (6.5)

There is no explicit solution for β̂MLE but one can apply numerical methods as the

Newton-Raphson algorithm (see section 5.19).

6.1.3 Consistency of the MLE

The MLE is consistent if the conditional density of y given x is correctly specified. Since the

density here must be the Bernoulli, the only possible misspecification is that the Bernoulli

probability is misspecified. So the MLE is consistent if pi ≡ F (xiβ) and is inconsistent

otherwise

E[y] = 1× p+ 0× (1− p) = p (6.6)

which implies

E[yi|xi] = F (x′iβ) (6.7)

Given correct density specification we get the ML asymptotic distribution

β̂ML ∼a N

{
β,

(
−E
[
∂2L(β)

∂β∂β′

])−1
}

(6.8)

6.2 Logit

We begin with c.d.f. of the logistic distribution

p = Λ(x′β) =
exp(x′β)

1 + exp(x′β)
(6.9)
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which specifies the following model density:

f(yi|x′iβ) = Λ(x′iβ)yi [1− Λ(x′iβ)]1−yi (6.10)

and hence the log-density

ln f(yi|x′iβ) = yi ln Λ(x′iβ) + (1− yi)[1− Λ(x′iβ)] (6.11)

Then the objective function will be

LN(β) =
N∑
i=1

yi ln Λ(x′iβ) + (1− yi)[1− Λ(x′iβ)]

=
N∑
i=1

yi ln Λ(x′iβ) +
N∑
i=1

[1− Λ(x′iβ)]−
N∑
i=1

yi[1− Λ(x′iβ)] (6.12)

The Score vector will be given by the F.O.C.1

∂LN(β)

∂β
=

∂LN(β)

∂Λ(xiβ)
× ∂Λ(xiβ)

∂β

=
N∑
i=1

yi
Λ′(x′iβ)

Λ(x′iβ)
+

N∑
i=1

[1− Λ(x′iβ)]′

1− Λ(x′iβ)
−

N∑
i=1

yi
[1− Λ(x′iβ)]′

1− Λ(x′iβ)

=
N∑
i=1

yi
Λ(x′iβ)[1− Λ(x′iβ)]

Λ(x′iβ)
xi −

N∑
i=1

Λ(x′iβ)[1− Λ(x′iβ)]

1− Λ(x′iβ)
xi +

N∑
i=1

yi
Λ(x′iβ)[1− Λ(x′iβ)]

1− Λ(x′iβ)
xi

=
N∑
i=1

yi[1− Λ(x′iβ)]xi −
N∑
i=1

Λ(x′iβ)xi +
N∑
i=1

yiΛ(x′iβ)xi

=
N∑
i=1

yi − Λ(x′iβ)xi (6.13)

So we have the score vector. The β̂ estimate however will need to resort to numerical

procedures in order to be found. The hessian matrix given by the S.O.C. will be

1notice that the logistic c.d.f. has the convenient property that Λ′(.) = Λ(.)[1 − Λ(.)] and Λ′′(.) =

[1− 2Λ(.)]Λ(.)[1− Λ()].
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∂2LN(β)

∂β∂β′
=

∂Score

∂Λ(xiβ)
× Λ(xiβ)

∂β

= −N−1

N∑
i=1

Λ′(x′iβ)xix
′
i

= −N−1

N∑
i=1

Λ(x′iβ)[1− Λ(x′iβ)]xix
′
i

(6.14)

6.3 Probit

Again, we begin with the well known c.d.f. of the normal distribution

p = Φ(x′iβ) =

∫ x′
iβ

−1

φ(z)dz (6.15)

where the p.d.f. φ(z) is

φ(z) =
1√
2π

exp

(
−z2

2

)
(6.16)

the conditional density of the model is

f(yi|x′iβ = Φ(x′iβ)yi [1− Φ(x′iβ)]1−yi (6.17)

which yields the log-density

ln f(yi|x′iβ) = yi ln Φ(x′iβ) + (1− yi) ln[1− Φ(x′iβ)]

= yi ln Φ(x′iβ) + ln[1− Φ(x′iβ)]− yi ln[1− Φ(x′iβ)] (6.18)

The objective function QN(β) will be

LN(β) =
N∑
i=1

yi ln Φ(x′iβ) + ln[1− Φ(x′iβ)]− yi ln[1− Φ(x′iβ)] (6.19)
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and the F.O.C.

∂LN(β)

∂β
=

∂LN(β)

∂Φ(x′iβ)
× ∂Φ(x′iβ)

∂β

=
N∑
i=1

yi
φ(x′iβ)

Φ(x′iβ)
xi −

φ(x′iβ)

[1− Φ(x′iβ)]
xi + yi

φ(x′iβ)

[1− Φ(x′iβ)]
xi

=
N∑
i=1

yi
φ(x′iβ)

Φ(x′iβ)
xi +

φ(x′iβ)

[1− Φ(x′iβ)]
xi(1− yi)

=
N∑
i=1

[1− Φ(x′iβ)][yi − φ(x′iβ)xi]− Φ(x′iβ)[φ(x′iβ)xi − yiφ(x′iβ)xi]

Φ(x′iβ)[1− Φ(x′iβ)]

=
N∑
i=1

yiφ(x′iβ)xi − Φ(x′iβ)yiφ(x′iβ)xi − Φ(x′iβ)φ(x′iβ)xi + Φ(x′iβ)yiφ(x′iβ)xi
Φ(x′iβ)[1− Φ(x′iβ)]

=
N∑
i=1

φ(x′iβ)x′i[yi − Φ(x′iβ)]

Φ(x′iβ)[1− Φ(x′iβ)]
(6.20)

yeah,so I guess Econometrics does beat Physics.
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Chapter 7

Duration Analysis

Figure 7.1: Kaplan-Meier estimate of US strike duration

Duration analysis models the length of time individuals remain in a given state before tran-

sition to another state occurs. Originally developed by biostatisticians and epidemiologists

the field has several applications in economic sciences, particularly in labour and industrial

economics. Typical examples of applications include strike (as in figure7) and unemployment

duration, industry evolution or self-employment spell maturity.

Duration analysis models need to deal with a relatively large number of issues. First,

both duration as well as the probability of transition need to be modelled via a wide set of

distributional functions. Second, there are two sampling method impacts analysis: stock
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sampling refers to sampling in the survey period from the stock of individuals who are then

in a given state. Flow sampling means that we sample those who enter the state during

a particular interval. Third, the data on the duration of a spell is often censored. This is a

major reason for modelling transitions rather than mean duration. Forth, several states and

destinations of transitions can occur.

7.1 Key Concepts

Duration is a state in a nonnegative random variable, denoted T , which in economic data is

often a discrete random variable. The cumulative distribution function (c.d.f.) of T is

denoted F (t) and the density function is f(t) = dF (t)/dt. Then the probability that the

duration or spell length is less than t is

F (t) = Pr[T ≤ t]

=

∫ t

0

f(s)ds. (7.1)

A complementary concept to the c.d.f. is the probability that the duration equals or

exceeds t, called the survival function, which is defined by

S(t) = PrT > t

= 1− F (t) (7.2)

The survivor function is monotonically declining (oh really?) from one to zero since the

c.d.f. is monotonically increasing from zero. If all individuals at risk eventually transit from

one state to another S(∞) = 0. Otherwise S(∞) > 0 and the duration distribution is called

defective. The sample mean of a completed spell length is the integral
∫∞

0
uf(u)du. In

other words, the mean duration equals area under the survival curve

E[T ] =

∫ ∞
0

(1− F (u))du =

∫ ∞
0

S(u)du. (7.3)

Another key concept is the hazard function, which is the instantaneous probability of

leaving a state conditional on survival to time t. This is defined as

λ(t) = lim
∆→0

Pr[t ≤ T < t+ ∆t|T ≥ t]

∆t

=
f(t)

S(t)
. (7.4)
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It is easily verifiable that the hazard function equals the change in the log-survivor

function,

λ(t) =
d ln(S(t))

dt
. (7.5)

Finally the cumulative hazard function

Λ(t) =

∫ t

0

λ(s)ds

= − lnS(t) (7.6)

Function Symbol Definition Relationships

Density f(t) f(t)=dF(t)/dt

Distribution F(t) Pr[T≤t] F(t)=
∫∞

0
f(s)ds

Survivor S(t) Pr[T≥t] S(t)=1-F(t)

Hazard λ(t) limh→0
Pr[t≤T<t+h|T≥t]

h
λ(t)=f(t)/S(t)

Cumulative hazard Λ(t)
∫∞

0
λ(s)ds Λ(t)= − ln S(t)

Table 7.1: Duration Analysis: Definitions and Key concepts

7.2 Censoring

Survival data are usually censored, as some spells are incompletelly observed. Data may be

right-, left- or interval censored. Right-censored data spells are observed from time 0 up

to a censoring time c.
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Chapter 8

Generalized Method of Moments

The most important assumption made for the OLS is the orthogonality between the error

term and regressors. Without it, the OLS estimator is not even consistent. Since in many

important applications the orthogonality condition is not satisfied, it is imperative to be

able to deal with endogenous regressors. The estimation method called the Generalized

Method of Moments (GMM), which includes OLS as a special case, provides a solution.

8.1 MM Estimator

We begin by defining the orthogonality condition on the assumption of the existence of r

moment conditions for q parameters

E[h(wi, θ0)] = 0 (8.1)

where θ is a q×1 vector, h(.) an r×1 vector with r ≥ q and θ0 denotes the value of θ in the

d.g.p. Notice that the vector W is an aggregate vector of one or more dependent variables

y, the independent variables X including some potentially endogenous covariates as well

as a vector of their instruments Z. The choice of h(.) is analogous to the choice of model

specification in say, m-estimation methods. Due to the immense versatility of the GMM

model, any econometric specification can fit to h(.), from OLS to maximum likelihood.

From the population condition stated in (8.1) we derive its sample counterpart

N−1

N∑
i=1

h(wi, θ̂) = 0 (8.2)

If we have a just identified model with r = q then (8.2) will produce a θ̂ estimate by

minimizing the following objective function
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Which is equivalently to minimize

arg minQN(θ) =

(
N−1

N∑
i=1

(wi, θ)

)′(
N−1

N∑
i=1

(wi, θ)

)
(8.3)

If however r > q then we have an overidentified model and (8.2) has no solution for θ̂ as

there are more r equations then q unknowns. Therefore we need to introduce a weighting

matrix WN in the (8.3) objective function

arg minQN(θ) =

(
N−1

N∑
i=1

(wi, θ)

)′
WN

(
N−1

N∑
i=1

(wi, θ)

)
(8.4)

whereW is an r×r symmetric positive definite, possibly stochastic with finite probability

limit weighting matrix. Differentiating QN(θ) in respect to (8.3) we get the GMM F.O.C.

∂QN(θ)

∂θ

∣∣∣∣
θ̂0

= 0(
N−1

N∑
i=1

∂(wi, θ̂)

∂θ

∣∣∣∣
θ̂

)
WN

(
N−1

N∑
i=1

hi(θ̂)

)
= 0 (8.5)

which will typically be solved with the numerical solutions presented in section 5.7.

8.1.1 Distribution of the GMM estimator

The following propositions are required for the deriving the GMM estimator distribution

1. the d.g.p. imposes the moment condition 8.1, that is, E[h(wi, θ0)] = 0

2. the r × 1 vector function h(.) satisfies h(w,θ(1)) = h(w,θ(2)) iff θ(1) = θ(1)

3. the following r × q matrix exists and is finite with rank q

G0 = p limN−1

N∑
i=1

(
∂hi
∂θ′

∣∣∣∣
θ0

)
(8.6)

4. WN →p W0 where W0 is finite symmetric positive definite

5. N−1/
∑n

i=1 hi|θ0 →d N [0, S(θ0)] where

S0 = p limN−1

N∑
i=1

N∑
j=1

[hih
′
j|θ0 ] (8.7)
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Then the GMM estimator θ̂GMM defined to be the root of the f.o.c. ∂QN(θ)/∂θ is

consistent for θ0 and

√
N(θ̂GMM − θ0)→d N [0, (G′0W0G0)−1(G′0W0S0W0G0)(G′0W0G0)−1] (8.8)

8.2 Optimal GMM

The optimal GMM will be given by the WN that achieves the smallest asymptotic variance

given the chosen h(.) model specification. For just-identified models the MM estimator is

obtained for any full rank weighting matrix, so WN is usually set as WN = Iq. This is

visible in equation (8.3). For overidentified models r > q and S0 known, the most efficient

GMM estimator is obtained by setting WN = S−1
0 . The QN(θ) objective function will then

be given by

arg minQN(θ) =

(
N−1

N∑
i=1

(wi, θ)

)′
Ŝ−1

(
N−1

N∑
i=1

(wi, θ)

)
(8.9)

where G0 is defined in equation (8.6) and Ŝ−1 is the inverted (assuming Ŝ invertible)

matrix

Ŝ−1 =
N∑
i=1

hi(θ̂)hi(θ̂)′ (8.10)

The optimal GMM estimator will then follow the limit distribution

√
N(θ̂GMM − θ0)→d N [0, (G′OS

−1
O G0)−1] (8.11)

which, if you notice is actually remarkably similar to the ML limit distribution with a

weighted outer product of the F.O.C.’s.

8.2.1 Number of Moment Restrictions

In general adding further moment restrictions improves asymptotic efficiency, as it re-

duces the limit variance (G′0S
−1
0 G0)−1 of the optimal GMM estimator or at worst leaves

it unchanged. The benefits of adding further moment conditions vary with the application.

For example, if the estimator is the MLE then there is no gain since the MLE is already

fully efficient. The literature has focused on IV estimation where gains may be considerable

because the variable being instrumented may be much more highly correlated with a combi-

nation of many instruments than with a single instrument. There is a limit, however, as the
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number of moment restrictions cannot exceed the number of observations. Moreover, adding

more moment conditions increases the likelihood of finite-sample bias and related problems

similar to those of weak instruments in linear models.
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Chapter 9

Instrumental Variables

The instrumental variables (IV) estimator provides a way to address endogeneity issues

(corr(X, u) 6= 0). An obvious alternative to solve this issue would be through a randomized

experiment, but for most economics applications such experiments are too expensive or even

infeasible. The IV approach consists in using an instrument z which will be able to explain

changes in x without the covariance effect upon u.

9.1 IV Estimator

The most simple case for the IV estimator is to assume the existence of a single scalar

instrument z. We begin the derivation from a generic model

Y = Xβ + u (9.1)

X’Y = X′Xβ + X′u (9.2)

In the endogeneity case we know that X′u 6= 0. Therefore, we need to apply a vector

instrument Z in order to observe that orthogonality condition and hence obtain a consistent

estimate. Therefore

Z′Y = Z′Xβ + Z′u (9.3)

which under the LS minimizing condition turns out to yield

βIV = [Z′X]−1Z′Y (9.4)
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The corresponding sample estimator is given by

β̂IV = [Z′X]−1Z′(Xβ + u) (9.5)

β̂IV = [Z′X]−1[Z′X]β + [Z′X]−1Z′u (9.6)

β̂IV = β + [N−1Z′X]−1N−1Z′u (9.7)

Instrument Quality The IV estimator will be consistent if the following two conditions

are verified

p limN−1Z′u = 0 (9.8)

p limN−1Z′X 6= 0 (9.9)

Both conditions are necessary for consistency. However, a good instrument will also be

characterized by a strong correlation with the X vector it is instrumenting. That is the

hidden imposition from equation (9.9). Now, with heteroscedastic errors, the IV estimator

is asymptotically normal with mean β and variance matrix consistently estimated by the

following sandwich type estimator

V̂ [β̂IV ] = [Z′X]−1Z′Ω̂Z[Z′X]−1 (9.10)

Identification Identification issues arise when the number of unknown parameters is

greater than the number of known parameters. In y = 2x + z, we have three unknowns

(x, y and z) for only one equation, making it unidentified. The order condition requires

that the number of instruments must at least equal the number of independent endogenous

components, so that r ≥ K. The model is said to be just-identified if r = K and overiden-

tified if r > K. The previous IV estimator is an example of a just-identified model, where

the number endogeneous regressors is equal to the number of instruments. The two-stage

least squares model, that will be presented next is an example of an overidentified model.

In practice however, as good instruments may be extremely hard to find, the just-identified

IV estimator tends to be widely used.
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9.2 Two-Stage Least Squares

The Two-Stage Least Squares (2SLS) estimator is used in overidentified models, where there

are more instruments than endogenous regressors. It is implemented in Stata under the

code ivregress 2sls and is computed as the name describes, that is, in two steps. In the

first step, the endogenous parameter is regressed on its instruments and on the remaining

exogenous variables in the model. In the second step, the fitted values from the estimated

endogenous regressor are plugged into the original regression and regressed. In equation

form we will have after having estimated the endogenous regressors in the first step

y = X̂β+ u (9.11)

where X̂ is the vector estimated with the instrumental variables vector Z in step one

X̂ = Z(Z′Z)−1Z′X (9.12)

substituting in equation (9.11) we simply have

y = Z(Z′Z)−1Z′Xβ+ u (9.13)

which, after the minimization of the sum of squared residuals yields the 2SLS estimator

β2SLS

β2SLS = [X̂ ′X̂]−1X̂ ′y

= [X ′Z(Z′Z)−1Z′Z(Z′Z)−1Z′X]−1XZ(Z′Z)−1Z′y

= [X̂ ′X]−1X̂y

= [X ′Z(Z′Z)−1Z′X]−1X ′Z(Z′Z)−1Z′y (9.14)

or in a compact form by

β̂2SLS = [X ′PzX]−1[X ′Pzy] (9.15)

where Pz = Z(ZZ′)−1Z′. The 2SLS homoscedastic variance will be equal to

V̂ [β̂] = N [X ′Z(Z′Z)−1Z′X]−1[X ′Z(Z′Z)−1Ŝ(Z′Z)−1Z′X][X ′Z(Z′Z)−1Z′X]−1

(9.16)
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If you think this formula is big then you should take a look at the heteroscedastic one.

Luckily Stata does all of that for you, with the , vce(robust) option for heteroscedastic

error term.

9.3 GMM IV’s

The Generalized Method of Moments (GMM) consists of a pragmatic approach to econo-

metrics. Its tremendous versatility is derived from the fact that it can be derived from the

moment conditions imposed upon the error term. Take the following model

yi = x′iβ + ui (9.17)

where each component of x is viewed as being an exogenous regressor if it is uncorrelated

with the error or an endogenous regressor if it is correlated. If all regressors are exogenous

then LS estimators can be used, but if any components of x are endogenous then LS esti-

mators are inconsistent for β. In the latter case, we will be using an instrument vector z in

order to attain the orthogonality condition

E[ziui] = 0 (9.18)

as ui = yi − xiβ we can rewrite (9.18) as

E[zi(yi − x′iβ)] = 0 (9.19)

Exogenous regressors can be instrumented by themselves. As there must be at least as

many instruments as regressors, the challenge is to find additional instruments that at least

equal the number of endogenous variables in the model.

9.3.1 GMM Estimator

The GMM estimator1 uses the population condition defined in (9.19) to build its objective

functionQN(β). The sample correspondent of the expectation will simply beN−1
∑

i zi(yi − x′iβ)

and hence the objective function

QN(β) = [Z′(y−Xβ)]′WN [Z′(y−Xβ)]

= [Z′y−Z′Xβ]′WN [Z′y−Z′Xβ] (9.20)

1for IV uses of the GMM estimator in Stata use ivregress gmm
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where WN is an r × r full-rank symmetric weighting matrix. The first order conditions

for QN(β) will be

∂QN(β)

∂β
= 0

−2[X ′Z]WN [Z′(y−Xβ)] = 0

X ′ZWNZ
′y −X ′ZWNZ

′Xβ = 0

X ′ZWNZ
′Xβ = X ′ZWNZ

′y

β̂GMM = [X ′ZWNZ
′X]−1X ′ZWNZ

′y (9.21)

which is exactly the same as the 2SLS estimator only with WN instead of Pz.

Similarly, the GMM variance estimator will share many similarities with the 2SLS ana-

logue. Notice however the presence of an Ŝ optimal weighting matrix which will be further

discussed

V̂ [β̂] = N [X′ZWNZ′X]−1[X′ZWNŜWNZ′X][X′ZWNZ′X]−1 (9.22)

9.3.2 Optimal GMM

The optimal W = S−1
0 where

S0 = limN−1

N∑
i=1

E[u2
i ziz

′
i] (9.23)

however, since in practice S0 is unknown we set WN = Ŝ−1, where Ŝ0 is consistent for

S0 and estimated as follows

Ŝ = N−1

N∑
i=1

û2
i ziz

′
i =

Z′DZ

N
(9.24)

where ûi = yi − x′iβ̂GMM is the GMM residual and D is an N ×N diagonal matrix with

entries û2
i .

The optimal GMM is then estimated through a two-step procedure. In the first step,

a GMM estimator is obtained using a suboptimal choice of WN , usually WN = IN . From

this step we gather the estimated squared residuals û2
i and form estimate Ŝ. In the second

step we use an optimal GMM estimator now with the newly estimated weighting matrix so

that WN = Ŝ−1. Then the optimal GMM estimator will be given by the following objective

function

QN(β) =

[
N−1

N∑
i=1

(uizi)

]′
Ŝ−1

[
N−1

N∑
i=1

(uizi)

]
(9.25)
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9.3.3 GMM vs. 2SLS

Both the optimal GMM and the 2SLS estimator lead to efficiency gains in overidentified

models. Optimal GMM has the advantage of being more efficient than 2SLS, if errors are

heteroscedastic, though the efficiency gain need not be great. Optimal GMM has the disad-

vantage of requiring additional computation compared to 2SLS. In cross-section applications

it is common to use the less efficient 2SLS, though with inference based on heteroscedastic

robust standard errors.

9.4 Three-Stage Least Squares

Three Stage Least Squares (3SLS) estimates a system of structural equations, where some

equations contain endogenous and potentially serially correlated variables. The Three-Stage

Least Squares (3SLS) method generalizes the 2SLS approach to take account of the corre-

lations between equations in the same way that SUR generalizes OLS. 3SLS is implemented in

Stata under the reg3 (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN)

command. 3SLS requires three steps:

1. use OLS regressions to estimate the fitted values for all the endogeneous variables. Each

of these regressions shall include all exogenous variables of the system as right-hand

side variables2

2. obtain a consistent estimate of the covariance matrix of the equation disturbances.

These estimates are based on the residuals from the 2SLS estimation of each structural

equation

3. perform a GLS-type estimation using the covariance matrix Ŵ estimated in the second

stage with the predicted values in place of the right-hand side endogenous variables

9.4.1 3SLS Estimator

The 3SLS is a GMM estimator that uses a particular weighting matrix. To define the 3SLS

estimator let ˆ̂ui = yi−X ˆ̂
β be the residuals from step 1. Define the G×G matrix

Ω̂ ≡ N−1

N∑
i=1

ˆ̂ui ˆ̂u′i (9.26)

2notice that this step is identical to the first step of the 2SLS estimation
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since Ω̂→p Ω = E(uiu
′
i) the weighting matrix used in 3SLS is

Ŵ =

[
N−1

N∑
i=1

Z′iΩZi

)−1

=

[
Z′(IN ⊗ Ω̂)Z

N

]−1

(9.27)

where IN is the N ×N identity matrix. The β̂3SLS estimator is then given by

β̂3SLS =
[
X ′Z{Z′(IN ⊗ Ω̂)Z}−1Z′X

]−1

X ′Z
[
Z′(IN ⊗ Ω̂)Z

]−1

Z′Y (9.28)

β̂3SLS is consistent if E[ui|zi] = 0 and asymptotically normal under the usual assumptions.

61



9.4. THREE-STAGE LEAST SQUARES CHAPTER 9. INSTRUMENTAL VARIABLES

62



Chapter 10

Specification Tests Revisited

Having presented the potential sources of misspecification in linear models we now turn to

the tools used for testing model fit to data. In the present chapter we present two testing

philosophies for model specifications (m-tests and Hausman tests) plus a set of some other

tests for some common model misspecifications.

10.1 M-tests

M-tests use moment conditions in a similar fashion to the GMM approach with the distinction

that moment conditions are not imposed in the estimation but rather used for testing. M-

tests are usually implemented using auxiliary regressions and estimated via ML. You can

find them in Stata under the mtest command. Unsurprisingly, the null is the population

moment orthogonality condition:

H0 : E[mi(wi, θ)] = 0 (10.1)

The sample moment correspondent to (10.1) will be our m-test, which will test of the

closeness to zero of the null

m̂N(θ̂) = N−1

N∑
i=1

mi(wi, θ̂) (10.2)

where w is a vector of observables, usually the dependent variable y and the regressors

x and sometimes additional variables z, θ is a q × 1 vector of parameter and mi(.) is an

h × 1 vector. This approach is similar to that for the Wald test, where h(θ) = 0 is tested

by testing the closeness to zero of h(θ̂). A chi-square test statistic can then be obtained by
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taking the corresponding quadratic form. Thus the m-test statistic is

M = Nm̂N(θ̂)′V̂ −1
m m̂N(θ̂) ∼ χ2(rank[Vm]) (10.3)

The m-test rejects the moment conditions (10.1) at significance level α M > χ2
α and

does not reject otherwise.The m-test approach is conceptually very simple. The moment

restriction (10.1) is rejected if a quadratic form in the sample estimate (10.2) is far enough

from zero. The true practical complication lies in the estimation of the inverse matrix

variance1 V −1
m .

10.1.1 CM test

The conditional moment test (cm) is an m-test based on the implied unconditional

moment restrictions

E[r(y,x,θ)|x] = 0 (10.4)

for some scalar function r(.). The conditional moment test will take use of this condition

and redefine it as an unconditional moment restriction

E[g(x)r(y,x,θ)] = 0 (10.5)

where g(x) and/or r(y,x, θ) are chosen so that these restrictions are not already used

in estimation.

10.1.2 Test of Overidentifying Restrictions

Tests for overidentifying restrictions are m-tests. In an overidentified model, there is an

excess of r − q unused orthogonality conditions which can be used to form an m-test which

follows a chi-square distribution with r − q degress of freedom.

10.2 Hausman Test

The Hausman test is based on the comparison between two the properties of two competing

estimators. Hypotheses are

H0 : p lim(θ̂− θ̃) = 0 (10.6)

Ha : p lim(θ̂− θ̃) 6= 0 (10.7)

More intuitively we have that under the null

1In fact many practitioners do it via bootstrapping techniques discussed in chapter 11.
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• estimator θ̂ will be consistent but inefficient

• estimator θ̃ will be consistent and efficient

and that under the alternative

• estimator θ̂ will still be consistent but inefficient

• estimator θ̃ will be become inconsistent

The Hausman test is therefore a test on both the value and the variance of the estimator.

It will take the following form

H = [θ̂− θ̃]′[V (θ̂− θ̃)]−1[θ̂− θ̃] (10.8)

The obvious trouble here is how to disentangle the two variances. Fortunately Hausman

figured that out for us

VH = V [(θ̂− θ̃)] = V [θ̂] + V [θ̃]− 2Cov[θ̂, θ̃] (10.9)

if θ̂ is the efficient estimator in the null hypothesis model, then Cov[θ̂, θ̃] is simply the

variance of θ̂, so that

V [(θ̂− θ̃)] = V [θ̂] + V [θ̃]− 2V [θ̂]

= V [θ̃]− V [θ̂] (10.10)

which, plugged back into (10.8) turns out to be

H = [θ̂ − θ̃]′[V (θ̃)− V (θ̂)]−1[θ̂ − θ̃] ∼ χ2(k) (10.11)

where dim[θ̂] = dim[θ̃] = k × 1

The Hausman test. Typical applications of this test are the the panel data comparison of fixed-

effects vs. random-effects estimator or the endogeneity test for the 2SLS vs. OLS estimators. In

the latter case we test the null that the 2SLS estimator is consistent but inefficient under the null

but still consistent under the alternative (provided the z vector of instruments is appropriate).

10.3 Common Misspecifications

Model misspecifications have previously been discussed in chapter 3. Here we provide some further

checks for heteroscedasticity, exogeneity of instruments and nonlinearity of the regressors.
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10.3.1 Heteroscedasticity

Heteroscedasticity occurs whenever a random variable has differing variances across its distribution.

Even though heteroscedasticity per se does not affect the consistency and can be easily corrected

with the usage weights in the variance-covariance matrix, it can quite often be a symptom of of

more troubling econometric issues as endogeneity (as is the case in figure 10.3.1). Heteroscedasticity

is usually dealt with by using the GLS model presented in chapter 2.

Figure 10.1: Example of Heteroscedasticity

Breusch-Pagan test The Breusch Pagan (BP) test, implemented in Stata as a postestimaton

command for linear regressions estat hettest is an chi-square test with nχ2(k) degrees of freedom.

The BP tests the null of constant variance in the model (no heteroscedasticity) and can easily

computed as follows

1. run the OLS regression

y = β0 + x′1β1 + ...+ x′nβn + z′1β1 + ...+ z′nβn + u (10.12)

2. obtain the û2 residuals of the estimated OLS regression equation

3. use the squared residuals û2 as the dependent variable in a secondary equation that includes

the independent variables suspected of being related to error term

û2 = β0 + z′1β1 + ...+ z′nβn + u (10.13)
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4. perform a chi-square test on the mode estimated in step 3. If the test confirms that the inde-

pendent variables are jointly significant then we can reject the hypothesis of no heteroscedas-

ticity. Notice however that under the null, the BP test assumes normally distributed errors

as it uses the restriction E[u4|x4] = 3σ4.

White test Unlike the BP test the White test does not require modeling heteroscedasticity, as

heteroscedastic-robust standard errors can be computed under minimal distributional assumptions.

Asides from that, the White test is quite similar to the BP test. It is computed as follows

1. run the OLS regression

y = β0 + x′1β1 + ...+ x′nβn + u (10.14)

2. obtain the û2 residuals of the estimated OLS regression equation

3. use the squared residuals û2 as the dependent variable and estimate the following equation

where X’s are all explanatory variables from the original equation

û2 = β0 + x′1β1 + ...+ x′nβn + u (10.15)

4. test the joint hypothesis that all the coefficients are zero (Chi-square test)

The White test is equivalent to the LM test LM = NR2. As mentioned the advantage of the White

test is that it requires no induction on which regressors are causing heteroscedasticity.

10.3.2 OIR Tests

If an IV estimator is used then the instruments must be exogenous for the IV estimator to be

consistent. For just-identified models it is not possible to test for instrument exogeneity. Instead, a

priori arguments need to be used to justify instrument validity. The Sargan (which by the way is an

m-test) is the standard over-identifying restrictions test. It sets the null at the moment condition

level H0 : E[zu] = 0 which corresponds to the sample equivalent

N−1
N∑
i=1

u2
i ziz

′
i ∼ χ2(r − q) (10.16)

leading to the Sargan test OIR

OIR = û′ZŜ−1Z′û (10.17)

where û = y−Xβ̂ and Ŝ = σ̂2Z′Z is consistent for p limN−1
∑

i u
2
i ziz

′
i. If OIR is large then

the moment conditions are rejected and the IV estimator is inconsistent. Rejection of H0 is usually

interpreted as evidence that the instruments z are endogenous, but it could also be evidence of

model misspecification so that in fact y 6= x′β+ u. In either case rejection indicates problems for

the IV estimator.
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Chapter 11

Bootstrapping

Bootstrapping is a computer intensive method based in Monte Carlo simulation and re-sampling

techniques which allow for an approximation asymptotic results using finite-samples. The wide

range of bootstrap methods can be classified into (1) statistical inference when conventional meth-

ods such as standard error computation are difficult to implement and (2) provide asymptotic

refinements that can lead to a better approximation in finite samples.

Figure 11.1: Bootstrap density of t-test statistic

11.1 Asymptotic Pivotal Statistic

For asymptotic refinement to occur, the statistic being bootstrapped must be an asymptotically

pivotal statistic, meaning a statistic whose limit distribution does not depend on unknown parame-
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ters. As an example. consider sampling from ) yi ∼ [µ, σ2]. Then the estimate µ̂ = ȳ ∼a N [µ, σ2] is

not asymptotically pivotal even given a null hypothesis value µ = µ0 since its distribution depends

on the unknown parameter σ2. However, the studentized statistic, t = (µ̂ − µ0)/sµ̂ ∼a N [0, 1] is

asymptotically pivotal.

11.2 The Bootstrap Procedure

11.2.1 Boostrap Algorithm

A general bootstrap algorithm works as follows:

1. Given data wi, ...,wN , draw a bootstrap sample of size N using a method given in 11.2.2

and denote this new samples as w∗i , ...,w
∗
N

2. Calculate a desired statistic using the bootstrap sample. Examples include

• the estimate θ̂∗ of θ

• the standard error sθ̂ of the estimate θ̂∗

• a t-statistic t∗ = (θ̂∗ − θ̂)/sθ̂ centered at the original estimate θ̂

3. Repeat steps 1.. and 2. B independent times where B is a larger number of bootstrap

replications of the statistic of interest

4. Use there B bootstrap replications ti obtain a bootstrapped version of the statistic

11.2.2 Bootstrap Sampling

The bootstrap d.g.p. in step 1. is used to approximate the true unknown d.g.p. We present three

sampling techniques for bootstrap sampling

Empirical distribution function use the empirical distribution of the data and perform a

sampling with replacement on that data B times. Remember that since the sampling is done with

replacement observations can be repeated or not show up within each new sample.

Parametric bootstrap if the conditional distribution y|x ∼ F (x,θ0) is known, then the

bootstrapped estimates will follow the same F (x,θ0) parametric distribution.

Residual bootstrap Each residual is randomly multiplied by a random variable with mean 0

and variance 1. This method assumes that the ’true’ residual distribution is symmetric and can

offer advantages over simple residual sampling for smaller sample sizes.
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11.2.3 Number of Bootstraps

The bootstrap asymptotics rely on N →∞ and so the bootstrap can be asymptotically valid even

for low B. However, clearly the bootstrap is more accurate as B → ∞. Pedro Portugal’s rule of

thumb is 999. Some other authors propose 399 for tests at level 0.05 and 1, 499 for tests at 0.01.

11.2.4 Standard Error Estimation

The bootstrap estimate of variance of an estimator is given by

s2
θ̂,boot

=
1

B − 1

B∑
b=1

(θ̂∗b −
¯̂
θ∗)2 (11.1)

where

¯̂
θ∗ = B−1

B∑
b=1

θ̂∗b (11.2)

11.2.5 Hypothesis Testing

Tests with asymptotic refinement Asymptotic refinement is achieved through the repeti-

tion of the bootstrapping procedure B times. As mentioned as B →∞ the more and more accurate

the bootstrapped estimates become.

1. Consider a t-test: compute B bootstrap replications of B test statistics, t∗1, ..., t∗B where

t∗b =
(θ̂∗b − θ̂)
sθ∗b

(11.3)

2. order the empirical distribution of t∗1, ..., t∗B from smallest to largest

3. get the bootstrap critical value for the defined α level of confidence

Tests without asymptotic refinement Alternative bootstrap methods can be used that

although asymptotically valid do not provide an asymptotic refinement.

1. compute t

t =
(θ̂ − θ0)

sθ̂,boot
(11.4)

where θ0 is the null hypothesis testing parameter

2. compare the single test statistic to critical values from the standard normal distribution
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11.2.6 Sampling Bias Reduction

The bootstrap estimate of the sampling bias is

Biasθ̂ = (
¯̂∗
θ − θ̂) (11.5)

Suppose, for example that θ̂ = 4 and
¯̂∗
θ = 5. Then the estimated bias is (5 − 4) = 1, an upward

bias of 1 that needs to be subtracted from
¯̂∗
θ. More generally the bootstrap bias-corrected

estimator of θ is

θ̂Boot = θ̂ − (
¯̂∗
θ − θ̂)

= 2θ̂ − ¯̂∗
θ (11.6)

In practice however bias correction is seldom used for
√
N -consistent estimators, as the boot-

strap estimate can be more variable than the original estimate θ̂ and the bias is often small relative

to the standard error of the estimate. Bootstrap bias correction is used for estimators that converge

at rate less than
√
N , notably nonparametric regression and density estimators.
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