

2026

Ph.D. Process & Food Engineering
PFE 606 Bioprocess Engineering
Media Formulation

DR. AJAY KUMAR GUPTA

DEPARTMENT OF POST HARVEST PROCESS AND FOOD ENGINEERING
COLLEGE OF AGRICULTURAL ENGINEERING JNKVV JABALPUR

4

Lecture

Medium formulation

Medium formulation is an essential stage in the design of successful fermentation process from initial laboratory experiments to pilot-scale development and full industrial-scale processes. To ensure a successful fermentation, the medium must be meticulously designed to satisfy three primary biological needs.

Requirement	Purpose	Key Constituents Involved
Cell Biomass	<i>To satisfy the basic elemental building blocks of the organism.</i>	<i>Carbon, Nitrogen, Hydrogen, and trace elements.</i>
Metabolite Production	<i>To provide the specific elements required for the synthesis of the desired product.</i>	<i>Precursors for antibiotics, vitamins, enzymes, or organic acids.</i>
Energy Supply	<i>To provide adequate energy for biosynthesis and the ongoing maintenance of the cell.</i>	<i>Primary carbon sources (sugars, lipids) that drive metabolic pathways.</i>

The first step to consider during media formulation is an equation based on the stoichiometry for growth and product formation.

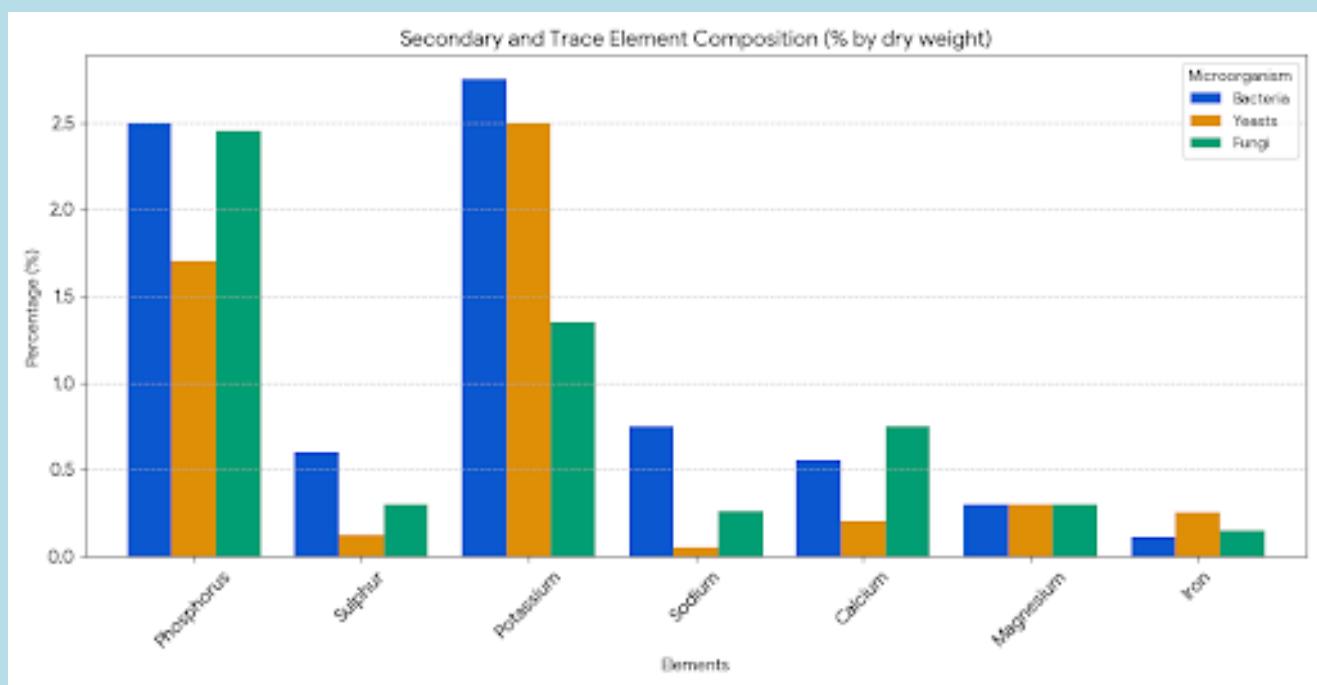
For a general aerobic bioprocess:

$$\text{Carbon and Energy source} + \text{Nitrogen Source} + \text{O}_2 + \text{other requirements} = \text{Biomass} + \text{Products} + \text{CO}_2 + \text{H}_2\text{O} + \text{heat}$$

Elemental Composition of Microorganisms

The elemental makeup of microorganisms is a critical factor in media formulation for fermentation, as the nutrients provided must meet the biological requirements of the specific organism being cultured.

1. Major Elements (Macronutrients)


- **Carbon:** This is the most abundant element across all groups, making up **50–53%** of bacteria, **45–50%** of yeasts, and **40–63%** of fungi.
- **Nitrogen:** Bacteria typically have the highest nitrogen content (**12–15%**), while yeasts (**7.5–11%**) and fungi (**7–10%**) contain slightly less.
- **Hydrogen:** The hydrogen content remains remarkably consistent across bacteria and yeasts at approximately **7%**.

2. Secondary Elements

- **Phosphorus:** Essential for nucleic acids and ATP, phosphorus levels are highest in bacteria (**2.0–3.0%**) and vary most significantly in fungi (**0.4–4.5%**).
- **Potassium:** This element is found in relatively high concentrations in bacteria (**1.0–4.5%**) and yeasts (**1.0–4.0%**), but is lower in fungi (**0.2–2.5%**).
- **Sulfur:** Bacteria contain the highest sulfur concentration (**0.2–1.0%**), while yeasts have the lowest (**0.01–0.24%**).

3. Trace and Other Elements

- **Magnesium:** All three groups share a similar requirement range for magnesium, typically between **0.1% and 0.5%**.
- **Sodium & Calcium:** These are present in trace amounts, though bacteria generally show a higher requirement for sodium (**0.5–1.0%**) compared to yeasts and fungi.
- **Iron:** While essential, iron is found in very low percentages, generally ranging from **0.01% to 0.5%** across all species.
- **Chloride:** Only recorded for bacteria in this dataset at a steady **0.5%**.

Importance of media

1. The growth medium is formulated to maintain microbial growth for economic production of our target product.
2. The design of media should be based on a good understanding of the relationship between microbial growth kinetics and product formation.
3. The Choice of medium affect the activity at both Up-stream and Down-stream processes.
4. A knowledge of the elemental composition of a choice of microorganism is required for the solution of the elemental balance equation.

2026

Ph.D. Process & Food Engineering
PFE 606 Bioprocess Engineering
Media Design

DR. AJAY KUMAR GUPTA

DEPARTMENT OF POST HARVEST PROCESS AND FOOD ENGINEERING
COLLEGE OF AGRICULTURAL ENGINEERING JNKVV JABALPUR

Lecture

3

THE COMPONENT OF A FERMENTATION PROCESS

Fermentation process may be divided into six basic component parts

Step	Phase	Action	Purpose & Key Details
1	Preparation	Media Formulation	Designing the nutrient mix (carbon, nitrogen, minerals) needed for both seed (inoculum) and large-scale production.
2	Preparation	Sterilization	Eliminating contaminating microorganisms from the medium, the fermenter vessel, and all piping/equipment.
3	Upstream	Inoculum Development	Scaling up a pure, active culture from a small vial to a large enough volume to "start" the production vessel.
4	Upstream	Fermentation	Growing the organism in the main fermenter under strict control (pH, temp, O ₂) to maximize product yield.
5	Downstream	Extraction Purification	Separating the desired product from the biomass and medium, followed by refining it to the required purity.
6	Post-Process	Effluent Disposal	Treating and safely disposing of chemical or biological waste generated during the process.

Microorganisms used in Fermentation

Notes prepared by Dr Ajay Kumar Gupta, Assistant Professor, Department of Post Harvest Process and Food Engineering, College of Agricultural Engineering, JNKVV, Jabalpur 482004 (M.P.) India

Microorganisms used in fermentation are primarily classified into three main biological groups: Bacteria, Yeasts, and Molds (Fungi).

Group	Classification / Type	Representative Species	Primary Products
Bacteria	Lactic Acid Bacteria (LAB)	<i>Lactobacillus bulgaricus</i> , <i>Streptococcus thermophilus</i> , <i>Lactococcus lactis</i>	Yogurt, Cheese, Sauerkraut, Lactic acid.
	Acetic Acid Bacteria	<i>Acetobacter aceti</i> , <i>Gluconobacter</i> spp.	Vinegar (Acetic acid), Kombucha.
	Butyric Acid Bacteria	<i>Clostridium acetobutylicum</i> , <i>C. butyricum</i>	Acetone, Butanol, Butyric acid.
	Propionic Acid Bacteria	<i>Propionibacterium freudenreichii</i>	Swiss cheese (CO ₂ holes), Propionic acid.
	Proteolytic/Alkaline	<i>Bacillus subtilis</i> , <i>Bacillus licheniformis</i>	Natto, Soy sauce, Protease enzymes.
Yeasts	Alcoholic Fermenters	<i>Saccharomyces cerevisiae</i>	Bread (leavening), Beer, Wine, Bioethanol.
	Bottom-Fermenters	<i>Saccharomyces pastorianus</i> (formerly <i>S. carlsbergensis</i>)	Lager beers.
	Industrial/Specialty	<i>Candida utilis</i> , <i>Pichia pastoris</i>	Single-cell protein (SCP), Recombinant proteins.
Molds	Filamentous Fungi	<i>Aspergillus niger</i> , <i>Aspergillus oryzae</i>	Citric acid, Soy sauce, Miso, Sake, Amylase.
	Cheese Ripening Molds	<i>Penicillium roqueforti</i> , <i>Penicillium camemberti</i>	Blue cheese (Roquefort), Camembert, Brie.

Methods of inoculation

Inoculation refers to the purposeful introduction of microorganisms into a sterile culture medium.

Method	Primary Purpose	Step-by-Step Procedure	Best Tool to Use
Streak Plate (General)	To obtain pure, isolated colonies from a mixed sample.	<p>Sterilize loop.</p> <p>↓</p> <p>Pick a small sample.</p> <p>↓</p> <p>Streak back and forth on a section of the agar.</p> <p>↓</p> <p>Re-sterilize loop.</p> <p>↓</p> <p>Drag once from the previous section and streak a new area.</p> <p>↓</p> <p>Repeat until 3–4 areas are covered.</p>	Inoculation Loop
1. Spiral Streak	To spread a sample uniformly or for quick propagation.	<p>Place the loop at the center of the plate.</p> <p>↓</p> <p>Move in a continuous outward circular motion toward the edge.</p>	Inoculation Loop
2. X-mas Tree (Radiant)	To handle diluted specimens and check for colony morphology.	<p>Streak the inoculum at the bottom edge.</p> <p>↓</p> <p>Draw vertical lines (branches) upward.</p> <p>↓</p>	Inoculation Loop

		Cross-streak diagonally across the vertical lines at the end.	
3. Zig-Zag Streak	For bulk growth or propagation of an already pure culture.	<p>Start at one end of the plate.</p> <p>Drag the loop in a single, continuous "S" or "Z" shape across the entire surface without lifting or re-sterilizing.</p>	Inoculation Loop
Pour Plate Method	To quantify (count) viable bacteria in a sample.	<p>Add a specific volume of liquid sample to an empty sterile dish.</p> <p>Pour molten agar (cooled to 45°C) over the sample.</p> <p>Swirl gently to mix.</p> <p>Allow to solidify (colonies will grow inside the agar).</p>	Pipette (for sample)